
SMM Rootkits:
A New Breed of OS Independent Malware

Shawn Embleton
University of Central Florida

sembleton@cs.ucf.edu

Sherri Sparks
University of Central Florida

ssparks@cs.ucf.edu

Cliff Zou
University of Central Florida

czou@cs.ucf.edu

ABSTRACT

The emergence of hardware virtualization technology has led to
the development of OS independent malware such as the Virtual
Machine based rootkits (VMBRs). In this paper, we draw
attention to a different but related threat that exists on many
commodity systems in operation today: The System Management
Mode based rootkit (SMBR). System Management Mode (SMM)
is a relatively obscure mode on Intel processors used for low-level
hardware control. It has its own private memory space and
execution environment which is generally invisible to code
running outside (e.g., the Operating System). Furthermore, SMM
code is completely non-preemptible, lacks any concept of
privilege level, and is immune to memory protection mechanisms.
These features make it a potentially attractive home for stealthy
rootkits. In this paper, we present our development of a proof of
concept SMM rootkit. In it, we explore the potential of System
Management Mode for malicious use by implementing a chipset
level keylogger and a network backdoor capable of directly
interacting with the network card to send logged keystrokes to a
remote machine via UDP. The rootkit hides its memory footprint
and requires no changes to the existing Operating System. It is
compared and contrasted with VMBRs. Finally, techniques to
defend against these threats are explored. By taking an offensive
perspective we hope to help security researchers better understand
the depth and scope of the problems posed by an emerging class
of OS independent malware.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection – Invasive
software (e.g., viruses, worms, Trojan horses)

General Terms
Security

Keywords
System Management Mode, Rootkit, Malware, Virtualization,
Operating System Security

1. INTRODUCTION
A rootkit consists of a set of programs that work to subvert
control of an Operating System from its legitimate users [16]. If
one were asked to classify viruses and worms by a single defining
characteristic, the first word to come to mind would probably be
replication. In contrast, the single defining characteristic of a
rootkit is stealth. Viruses reproduce, but rootkits hide. They hide
by compromising the communication conduit between an
Operating System and its users. Secondary to hiding themselves,
rootkits are generally capable of gathering and manipulating
information on the target machine. They may, for example, log a
victim user’s keystrokes to obtain passwords or manipulate the
system state to allow a remote attacker to gain control by altering
security descriptors and access tokens.

Since the user’s view of the computer system and its resources is
strictly mediated by the information the Operating System
provides to it via hardware and software interfaces, a malicious
program that controls the interfaces controls the entire system. A
rootkit hides its presence by intercepting and altering the interface
communications of various Operating System or hardware
components to hide files, processes, and network connections on
the computers that it is installed upon. This hiding may be
achieved either directly or indirectly using code modifications,
data modifications, or a combination of both.

It is important to emphasize, however, that the nature of the
rootkit compromise is not to escalate or circumvent privilege, but
rather to hide an attacker’s presence on an already compromised
system. The initial security breach that allows installation of the
rootkit may arise from social engineering attacks that trick an
unsuspecting user into running a malicious application or from the
exploitation of unpatched vulnerabilities in the Operating System
and other critical software.

Early rootkits relied upon system file masquerade to hide their
presence. An attacker would replace a system file with a
subversive file that “masqueraded” as the original [19]. The login
program was a common target for this type of attack as it could be
replaced by a malicious version which captured the passwords of
users as they attempted to log into a system. This motivated the
development of file system integrity checkers like Tripwire [12].
Rootkit authors quickly developed execution path redirection,
also known as hooking, techniques to counter detection by
integrity checkers. Hooking encompasses a class of techniques
whereby a program’s normal control flow is altered to execute a
block of malicious code. It is important to note that execution
path redirection is impervious to traditional integrity checkers like
Tripwire which typically only check files stored on the hard disk

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SecureComm 2008, September 22-25, 2008, Istanbul, Turkey.
Copyright 2008 ACM ISBN# 978-1-60558-241-2.

for modifications. This is because they make their changes to the
loaded images in memory rather than to the disk images. Though
more difficult to detect than system file masquerade, hooking
remains detectable by memory based integrity checkers and other
heuristic techniques. Eventually, rootkit authors figured out how
to evade hook detection by using Direct Kernel Object
Manipulation (DKOM) to modify dynamic kernel data structures
for which it is impossible to establish reliable heuristics or trusted
baseline values [21]. The idea is that by controlling the data used
in a function, a rootkit can indirectly control the execution path.

It is clear that rootkit development has exhibited an adaptive, co-
evolutionary pattern in response to security software
advancements. The result has been an ongoing, sophisticated
game of ‘hide and seek’ between rootkit developers and detectors.
As rootkits seek ever better methods to hide their presence on
infected systems, defenders must develop newer, more advanced
techniques to find them. With the emergence of hardware
virtualization technology, the rootkit battle field has changed
dramatically. Previous rootkits co-existed with the Operating
System (OS). They exerted their influence by redirecting control
flow within the OS to their own malicious code [20]. This was
accomplished by making modifications to either static or dynamic
OS data structures in memory. Security researchers responded by
developing integrity checkers and heuristics to detect these
changes [11].

Unfortunately, these techniques are useless against Virtual
Machine Based Rootkits (VMBRs) which have the ability to exist
independently of any OS. Such rootkits are able to exert an
alarming degree of control without modifying a single byte in the
Operating System [1]. A VMBR hoists the Operating System into
a virtual machine and exerts its controls over the machine from an
external Virtual Machine Monitor (VMM). This process is
invisible to the OS. Once installed, the VMM is capable of
transparently intercepting and modifying states and events
occurring in the virtualized OS. It can observe and modify
keystrokes, network packets, memory, and disk I/O. If the VMBR
has virtualized memory, its code footprint will also be invisible.
These things make a VMBR extremely difficult to detect.

 In this paper, we draw attention to another, similar threat that
exists on many commodity systems in operation today: The
System Management Mode (SMM) based rootkit (SMBR). SMM
is an abbreviation for Intel’s System Management Mode, a
processor mode which has existed since the i386, yet still remains
largely obscure. Unlike the other processor modes, (e.g.
protected, real, virtual 8086) which are designed for running
Operating Systems or user applications, SMM was developed
exclusively for managing low level hardware operations like
power and thermal regulation. SMM has its own private memory
space and execution environment which is generally invisible to
code running outside. Furthermore, SMM code is completely non
preemptible, lacks any concept of privilege level, and is immune
to memory protection mechanisms [4]. These features make it an
attractive home for malicious rootkits.

A System Management Mode Based Rootkit (SMBR) offers
comparable stealth to a VMBR while maintaining a potentially
smaller code footprint. Because the SMM execution
environment’s isolation is enforced at the hardware level by the
chipset, an SMBR gains the ability to conceal its memory
footprint by default without having to implement slow and

complex memory virtualization code. Like the VMBR, the
SMBR is able to exert control without requiring any visible
changes to the underlying operating system.

In this paper, we present our development of a proof of concept
SMBR. In it, we explore the potential of System Management
Mode for malicious use. By taking an offensive perspective we
hope to help security researchers better understand the depth and
scope of the problems posed by an emerging class of OS
independent malware.

Our SMM rootkit provides a high degree of stealth and control.
We demonstrate the construction of a chipset level keylogger by
redirecting the keyboard Interrupt Request (IRQ) to System
Management Mode in the Advanced Programmable Interrupt
Controller (APIC). Logged keystrokes are then encapsulated into
UDP packets and sent out via the chipset LAN interface. This is
all accomplished without making any visible changes to the target
system. We also show that, once installed, the rootkit remains
hidden in memory making it difficult to detect or remove.
Because they have somewhat similar traits, we also compare and
contrast VMBRs with SMBRs on several key characteristics
including operating environment, size, complexity, stealth, and
control. Finally, we discuss countermeasures to detect and defend
against these threats.

The rest of this paper is organized as follows. In section 2, we
discuss some related work. In section 3, we give an overview of
System Management Mode. We cover the design and
implementation of our proof of concept SMBR in section 4. We
evaluate it in section 5 and provide a comparison and contrast
with virtual-machine based rootkits in section 6. Defense is
discussed in section 7. Finally, we conclude in section 8.

2. RELATED WORK
Our research on SMM rootkits (SMBRs) is related to three areas
of existing rootkit technology: memory management subversion,
virtualization, and BIOS exploitation.

Once a rootkit is publicly known, Anti-Virus software can
develop a signature for it. Furthermore, rootkit changes to the OS
are detectable using heuristic memory scans. It is, therefore,
advantageous for a rootkit to be able to hide its memory footprint.
Memory subversion was first implemented in the Shadow Walker
rootkit [10]. The Shadow Walker rootkit demonstrated that it was
possible to control the view of memory regions seen by the
Operating System and other processes by hooking the paging
mechanism and exploiting the Intel split TLB architecture. Using
these techniques, it was capable of hiding both its own code and
changes to other Operating System components. This enabled it to
fool both signature and heuristic based scans. Memory
virtualization support on Intel and AMD platforms with hardware
virtualization extensions can also be exploited to hide the memory
footprint of malicious code. The general idea behind memory
virtualization is that the Virtual Machine Monitor (VMM)
maintains its own set of page tables in addition to the virtualized
guest OS’s paging structures. The guest OS is free to manage its
own page tables, however, physical translation occurs using the
VMM’s page tables rather than the guest OS’s. Furthermore, the
VMM page tables are inaccessible to the guest. As a result, the
VMM has complete control over all of the physical memory the
guest is allowed to access. Instructions which affect paging
structures and the cache are also virtualized to cause traps to the

VMM. The Blue Pill II rootkit demonstrated this capability [24].
A SMM rootkit also has the ability to hide its code footprint, but
it does not require the implementation of complex memory
virtualization code.

Virtual-machine based rootkits have many characteristics in
common with the System Management Mode based rootkit
presented in this paper. They both operate at a layer below the
Operating System and they both are capable of intercepting and
emulating low level system events without needing to modify any
existing OS code or data structures. The VMBR threat was
analyzed by [1]. Using Vmware and Virtual PC, authors in [1]
implemented several malicious VMBR services to subvert both
Windows and Linux. Their implementation, however, was
primarily theoretical. This is due to the fact that real world
Operating Systems run on native hardware, not in software virtual
machines like Vmware. As real world attackers are unlikely to
implement their malicious code in Vmware, the malicious services
implemented by [1] are primarily simulations of real world
scenarios. Joanna Rutkowska took the VMBR into the practical
domain with her development of the Blue Pill rootkit [3][24].
The Blue Pill rootkit exploits AMD hardware virtualization
extensions to migrate a running Windows Operating System into a
virtual machine. It hides its code footprint using memory
virtualization, supports nested virtual machine monitors, and
implements countermeasures against timing based detections. [23]
implemented a similar proof of concept rootkit for MacOS X on
the Intel virtualization platform. This rootkit was code named
Vitriol. On the other hand, there has been very little research on
SMM based rootkits.

Finally, BIOS rootkits are related to SMM rootkits. The BIOS is
the first code that runs when a system is powered on. It performs
diagnostics and initializes the chipset, memory, and peripheral
devices. A rootkit that infects the BIOS is capable of controlling
hardware at a level similar to an SMBR with the additional benefit
of being able to survive reboots and reinstallations of a new OS.
John Heasman developed a proof of concept BIOS rootkit that
acts as a simple Windows NT backdoor [8]. He used the
Advanced Configuration and Power Interface (ACPI) to patch a
kernel API in system memory. Because his rootkit changed code
in the OS it was detectable using existing rootkit detection tools

like VICE, Blacklight, or Rootkit Revealer [11][17][18]. For
more advanced BIOS rootkits, suggested countermeasures include
disabling ACPI in the BIOS and auditing the ACPI tables. Further
hardware mitigations include preventing BIOS reflashing or
requiring that the BIOS is signed [8]. These countermeasures,
however, cannot defend against an SMM based rootkit.

Using SMM to escalate privilege was first discussed by Loic
Duflot [9]. On OpenBSD, the superuser is granted limited
privileges. Duflot demonstrated an exploit against OpenBSD that
allowed an attacker to arbitrarily extend superuser privileges.
Because SMM code has unrestricted access to physical memory,
Duflot demonstrated that if attacker can run code in System
Management Mode and locate the internal variable in memory
that the OS uses to determine the current privilege level, then he /
she can modify it to circumvent the Operating System’s built in
security and obtain full privileges. To perform this exploit, the
attacker must have the ability to read and write the programmed
I/O registers and the legacy video memory range. Duflot’s
exploit, however, was not a rootkit. His stated goal was privilege
escalation, not stealth. The ability to read and write physical
memory is only one System Management Mode capability of
interest to a rootkit author. A potentially more advanced and
interesting capability lies in the ability of SMM code to exert
unrestricted control over peripheral hardware. The fact SMM
code is non pre-emptible and communicates directly with the
hardware makes it stealthy and relatively immune to detection. In
this paper, we build upon Duflot’s work to explore some of the
advanced capabilities of System Management Mode. The ability
to control peripheral hardware could make SMM based malware,
like rootkits, a formidable security threat. Our successful
construction of a SMM chipset level, rootkit keylogger and
network backdoor shows that SMM is a practical threat that could
be exploited by real world malware authors.

3. OVERVIEW OF SMM
This section gives an overview of System Management Mode
(SMM) and discusses how its features make it an ideal execution
environment for stealthy malware.

0xFFFFFFFF

0x00000000
 0xA0000

(SMBASE)

SMRAM

 SMBASE+0x8000

 SMBASE+0xFFFF

0xBFFFF

State Save Area

SMI Handler

 Figure 1: The physical memory map for the Intel 845 chipset showing location of the compatible SMRAM region and its layout on a
 32-bit system.

The Intel architecture defines four processor modes of operation:
Real Mode, Virtual-8086 Mode, Protected Mode, and System
Management Mode [4]. Real Mode and Virtual-8086 Mode are
legacy modes dating back to the 80286 / 80386 CPU. Real Mode
is characterized by a segmented 20 bit addressable memory space
and the lack of hardware memory protection. MS-DOS and early
Windows OS versions ran in Real Mode. Current operating
systems run in either 32 or 64 bit protected mode. Protected mode
overcomes the limitations of Real Mode by extending the
addressable memory space to 32/64 bits and adding support for
paging, memory protection, and multi-tasking. Virtual 8086
mode was designed to allow Real Mode and Protected Mode
programs to coexist; however, it is seldom used by modern
operating systems. In contrast to the other modes, System
Management Mode (SMM) was not designed for running
operating systems or user programs. Rather, it was intended for
managing low level hardware operations (e.g. power management
and thermal regulation) and is usually installed by the BIOS.
SMM has its own memory space and execution environment
which is generally invisible to code running outside of SMM.
Furthermore, SMM code is completely non preemptible, lacks any
concept of privilege level, and is immune to memory protection.
These things clearly make SMM a potentially attractive home for
stealthy rootkits. System Management Mode is entered when the
processor receives a System Management Interrupt (SMI) [4].

3.1 SMRAM – The SMM Memory Space
The System Management Memory Space (SMRAM) is used to
hold the processor state information saved upon an entry to SMM,
the SMI handler, and its associated data [4]. The Intel chipset
documentation defines three locations for SMRAM: Compatible,
High Memory Segment (HSEG), and Top of Memory Segment
(TSEG) [7]. The compatible region overlaps the legacy VGA
memory range from 0xA0000 to 0xBFFFF and is the default
location for SMRAM. Normally, the contents of SMRAM are
only visible to code executing in System Management Mode. This
isolation is ensured by the chipset’s re-routing of any non SMM
memory accesses to the VGA frame buffer. Compatible SMRAM
is also limited to 128K. The HSEG and TSEG regions provide an
extended, write-back, cacheable SMM memory space up to 256
MB in size.

Structurally, the SMRAM space consists of a state save area and
the System Management Interrupt (SMI) handler. The remaining
space is available for use by the handler for data and stack
storage. An internal processor register, called SMBASE, holds
the physical address pointer to the start of the SMRAM space.
The SMBASE value is also stored in the state save area.
Furthermore, the state save area is located at an offset from the
beginning of SMRAM in physical memory. This area is used to
store the register context when a System Management Interrupt
(SMI) occurs. The SMI handler is also located at an offset from
the start of SMRAM. Figure 1 illustrates the location and layout
of compatible SMRAM.

3.2 Entering & Exiting SMM
The processor enters System Management Mode when it receives
a System Management Mode Interrupt (SMI) [4]. When an SMI
is received, execution context is saved into the SMRAM state
save map and execution of the SMI handler is commenced. The
saved state information includes the processor’s control registers,
segment registers, task register, general purpose registers, flags,

instruction and stack pointers. The SMM execution environment
is similar to 16 bit real mode, with the difference that the full 32
bit flat physical address space is accessible. Code executing in
SMM is non preemptible because SMIs have greater priority than
both processor exceptions and external interrupts, including non-
maskable interrupts (NMI). When the SMI handler wishes to exit
System Management Mode, it executes the Resume from System
Management Mode (RSM) instruction [5]. The RSM instruction
restores the previous execution context by copying the saved state
information in SMRAM back into the processor’s registers and
then returns control back to the interrupted code. The I/O
Controller chipset documentation defines a variety of events
capable of triggering an SMI. A few of them include: a power
button press, real time clock (RTC) alarm, USB wake events,
Advanced Configuration and Power Interface (ACPI) timer
overflows, periodic timer expiration, and a write to the Advanced
Power Management Control (APM) register, 0xB2 [6]. In the next
section, we detail how some of these events might be exploited by
a stealthy rootkit.

4. SMBR DESIGN & IMPLEMENTATION
A successful SMBR must overcome two obstacles. First, it must
write its code into the SMM handler portion of the SMRAM
memory space. This process should be capable of occurring from
within a protected mode environment (e.g. Windows or Linux
operating system) in order to give the rootkit its maximum
infection potential. Second, the rootkit must have some means of
intercepting events in the host system and gaining control of
execution.

In this section, we discuss the design and implementation of an
SMBR. We take a similar approach to [1] with our design and
development; however, we opt to design a practical rootkit that
can be implemented on native hardware, as opposed to a
simulated virtualization platform like Vmware. Section 4.1
describes how the SMBR can be installed on a running Operating
System. We discuss our implementation of a SMM handler that
functions as a chipset level keylogger and network backdoor in
section 4.2. Finally, we discuss the potential for other, related
forms of malicious hardware subversion at the chipset level.

4.1 Rootkit Installation
The rootkit can install a new SMM handler provided it has I/O
port access privileges, the ability to map physical memory, and the
SMRAM region has not been locked by the BIOS or other system
software. We used a Windows kernel driver to install the SMBR.
The Intel chipset documentation defines a System Management
RAM Control Register (SMRAMC) which controls the
accessibility and visibility of SMM space from other processor
modes [6]. The two relevant bits in this register are the D_LCK
bit and the D_OPEN bit. D_OPEN controls the visibility of
SMRAM. If D_OPEN is clear, SMRAM is only visible to code
executing in SMM mode. Non SMM mode memory reads / writes
are diverted by the chipset to the VGA frame buffer. Figure 2
illustrates this process. D_LCK controls the accessibility of
SMRAM by controlling access to the SMRAMC register. If
D_LCK is set, the SMRAMC register becomes read-only and
remains that way until a reset occurs. Assuming that the D_LCK
bit is clear, the rootkit is installed as follows:

1. On a host machine, an attacker makes SMRAM visible from
protected mode for reading and writing by setting the
D_OPEN bit.

2. Once D_OPEN is set, the attacker copies the rootkit SMM
handler code to the handler portion of SMRAM as defined by
the Intel documentation [4].

3. Finally, the attacker clears the D_OPEN bit and sets the
D_LCK bit. This has the effect of making SMRAM invisible
to everything other than the subverted (rootkit) SMI handler
and of locking the SMRAMC register so that it can no longer
be modified. The addressing of the SMRAMC register is
chipset specific.

4.2 Rootkit SMM Handler Implementation
In the following section, we discuss the implementation of our
proof of concept rootkit SMM handler. Our rootkit functions as a
chipset level keylogger and network backdoor. First, we give an
overview of the Intel APIC architecture. This is followed by a
description of the APIC redirection technique that we use to trap
key presses and the procedure used to exfiltrate the key data over
the chipset LAN interface.

The Intel Advanced Programmable Interrupt Controller (APIC) is
used to manage communication between the CPU, chipset, and
external peripheral devices. It consists of two components: The
I/O APIC and the Local APIC (LAPIC) [25]. The I/O APIC is
located on the motherboard while the Local APIC is integrated
into the CPU. There is typically one I/O APIC for each peripheral
bus and one Local APIC per CPU. The primary job of the I/O
APIC is to route the interrupts it receives from peripheral buses to
one or more Local APICs on the system. In turn, each local APIC
is responsible for receiving and managing the external interrupts
for the CPU that it belongs to. When it receives interrupts, the
LAPIC dispatches them to the processor, one at a time, based
upon their priorities.

The processor looks up the handler for the interrupt in the
Interrupt Descriptor Table (IDT) [5]. Each interrupt is assigned a
unique identifier, called a vector. The processor uses this value as
an index into the IDT. The Interrupt Descriptor Table is a
processor specific data structure containing one entry for each of
255 defined vectors. Kernel rootkits often use IDT hooking to
intercept processor interrupts and exceptions [13]. This involves

replacing the Operating System handler contained in the IDT with
a pointer to a malicious hook routine. Fortunately, such blatant
modifications of the IDT are easily detectable. Detection simply
involves enumerating each of the handler pointers and validating
that the address is within the range of either the OS kernel or a
legitimate system driver. If the address falls outside one of these
known ranges, it is flagged as suspicious and a security analyst
can conduct further investigations.

Differing from the Kernel rootkit described above, a rootkit
operating in System Management Mode does not need to make
any detectable changes to the IDT in order to intercept interrupts.
Rather than intercepting an interrupt at the processor handling
level, the SMM rootkit can intercept it directly at the chipset level
by re-routing the interrupt in the APIC. We demonstrate this
technique in our rootkit by implementing a chipset keylogger.
There are three steps in this process. First, we must be able to
intercept the keyboard interrupt. Second, we must be able to sniff
the keystrokes from the keyboard’s internal buffer. Finally, we
should forward the interrupt to the CPU for normal handling.

We accomplish the first step by rerouting the keyboard IRQ to
System Management Mode. Thus, whenever a user presses a key,
our SMM handler is called. In the handler, we are able to sniff
the key. Finally, we manually forward the interrupt to the CPU for
normal handling by taking advantage of the Local APIC’s Inter
Processor Interrupt (IPI) mechanism. We outline the
implementation details in the following section.

As mentioned previously, the I/O APIC’s primary function is to
receive and route peripheral hardware interrupts to the Local
APIC for delivery to the CPU. For this purpose, the I/O APIC
architecture defines a Redirection Table [6]. The Redirection
table contains a dedicated entry for each interrupt pin. It is used
to translate the physical, hardware signal into an APIC message
on the APIC bus. This table can be used to specify the destination
of the interrupt, the vector, and the delivery mode.

The delivery mode is the primary field of interest for our rootkit.
Most interrupts use the Fixed delivery mode. This mode
automatically forwards the interrupt to the LAPICs for all
processors specified in the destination. Our rootkit changes the
delivery mode of the keyboard IRQ from Fixed to SMI. Now,
rather than automatically forwarding the interrupt, it will be
redirected to our SMM handler. In our handler, we are free to

D_OPEN

0xA000

0

1 SMRAM

VGA

0xBFFFF

0xA0000

Memory
Access to
SMRAM

Space

MCH Controller Hub

Phys Mem

Figure 2: SMRAM memory accesses are filtered by the chipset based on their origin and the state of
D_OPEN in the SMRAMC register. SMM accesses are normally directed to SMRAM while non-SMM
accesses are directed to VGA memory.

sniff the contents of the keyboard buffer and send it out in
network packets.

We can accomplish the second step of extracting the keyboard
data by reading the keyboard’s internal hardware registers. The
key press information is extracted by reading from the keyboard
data register. Unfortunately, this read is destructive. Therefore,
after the key data has been read, it must be replaced so that it is
accessible to other system software. We replace it by writing a
specific command byte to the keyboard command register. This
byte instructs the keyboard that the next byte written to the data
register should remain there as if placed there by a physical key
press [15].

Once we have extracted the keyboard data, it is necessary to
forward the interrupt to the CPU for normal user input handling.
Otherwise, the keyboard will no longer function. We use the
Local APIC’s ability to issue inter processor interrupts (IPI) for
this purpose. The LAPIC documentation defines an Interrupt
Command Register (ICR) [5]. Using this register it is possible to
send an interrupt to one or more processors, including self. As in
the I/O APIC’s Redirection Table, the destination, vector, and
delivery mode are all specifiable. When the lower 4 bytes of the
ICR are written to, the LAPIC generates the IPI message and
sends it out over the system bus. From within our SMM handler,
we re-issue the interrupt with a destination of self and a fixed
delivery mode by writing to the ICR. Therefore, the keyboard
interrupt is delivered to the processor in the normal manner as
soon as we exit from SMM mode. Figure 3 illustrates how the
SMBR intercepts a keystroke signal and forwards it to the CPU.

After we have captured the keyboard data, we use the chipset
LAN controller to transmit the key data collected by our SMM
keylogger to an external IP address. Thus, our SMM handler has 2
functions: it logs keystrokes and then sends the logged data out
over the chipset LAN interface. The transmit action is performed
periodically in the SMM handler when a defined keyboard data
storage buffer becomes full. Using a buffer as opposed to sending
the keystrokes immediately as they are received allows more
variability in when to send the data and could be exploited by a
rootkit wishing to use traffic shaping techniques to stealthily
blend in with existing network activity. This simulates the
behavior of a malicious attacker attempting to exfiltrate sensitive
material from a compromised system.

The LAN controller acts as both a master and a slave on the PCI
bus. In the role of master, it interacts with system memory to
access transmit and receive data buffers. As a slave, the host
processor accesses the LAN controller’s internal structures to read
and write information to its on-chip registers. These registers may
be either I/O mapped or memory mapped. The method to use is
determined by system software. The basic process for transmitting
a packet of data follows:

1) We first check the LAN controller to ensure that it’s in an idle
state and not in the midst of transmitting or receiving.

2) Next, we build a Transmit Command Block.

3) Then, we build a data packet containing the keyboard buffer
data. For simplicity, we chose to use the UDP and TFTP
protocols. Thus, the basic packet structure consists of an
Ethernet header followed by an IP header, followed by a UDP
header, followed by a TFTP header, followed by the key data.

x

IRQ Vector

0 -

1 0x93

2 -

…

23 -

I/O APIC

Msg

Int Handler

0x00 -
…

0x93 0xA8063044BB
B

…

L
ocal A

PIC

IDT OS Handler

push esp
push ebp
push ebb
push esi
push edi
sub esp,54
mov ebp,esp

IRQ Vector

0 -

1 SMI #

2 -

…

23 -

I/O APIC

Key
Press

Log/Transmit the
keycode and send a
message to the local
APIC to invoke the
normal keyboard
handler.

SMM Handler

M
sg

Description
The normal operation (top-half)
is subverted allowing the new
SMM handler to log/transmit
the keycodes and then forward
the interrupt.

 Figure 3: Normal and SMBR keystroke handling paths

Manufacturer Model Chipset Purchase Date Locked?

DELL Inspiron 8100 i815EP 2001 NO

DELL Dimension 4500 i845E 2002 NO

DELL Inspiron 1100 i845GL 2003 NO

DELL Dimension 2400 i845GV 2003 NO

DELL Dimension 4600 i865PE 2004 NO

Custom Built N/A i845PE 2004 NO

IBM T42 i855PM 2005 YES

DELL Precision 390 i975X 2006 YES

DELL Dimension 9200 i965P 2006 YES

DELL Dimension 9150 i945P 2006 YES

DELL Inspiron 9400 i945GM 2006 YES

DELL Inspiron 530 iP35 2007 YES

Sony VAIO i945GM 2007 YES

Custom Built N/A i945X 2007 YES

Figure 4: System Vulnerability Assessment

x

4) We load the LAN controller with the physical address of the
Transmit Command Block.

5) Finally, we initiate execution of the LAN controller. This
will cause it to begin executing the Transmit Command
Block constructed in step 2 and will send the packet
constructed in step 3 out over the network.

4.3 Real World SMM Rootkits
Although we have only implemented a proof of concept
keylogger and network backdoor, a real-world SMM rootkit
could implement an unlimited number of malicious services.
Virtually every peripheral hardware device can be subverted
using these techniques. Some of these devices include the USB
ports, Mouse, and Hard Disks. We can envision an extended
version of our rootkit that not only transmits exfiltrated data, but
also receives malicious commands from an attacker and relays
all manner of sensitive materials stealthily out over the network.
An SMM rootkit can also gain control on non hardware events
like periodic timer expiration. This would allow for SMIs to be
generated at regular intervals, a potentially useful feature for a
malicious rootkit wishing to periodically gain control to inspect
the state of the system.

Furthermore, such malicious activities are difficult to detect.
The SMM handler code is completely inaccessible to the host
system and there are no changes to processor or Operating
System data structures. Indeed, the only potentially detectable
changes are the modification to the I/O APIC redirection table
and network activity. As there are legitimate reasons to change
the delivery mode to SMI (i.e., the change of I/O APIC
redirection table by an SMM rootkit) that in itself is unlikely to
be a sufficient heuristic to identify a stealthy rootkit. One such
legitimate use is to provide legacy keyboard and mouse support
for USB devices [29]. Finally, the network transmission, which
occurs inside of SMM at the chipset level will bypass any host

based intrusion detection systems or firewalls. The network
activity could be further concealed by using traffic shaping
techniques.

4.4 Limitations
Our proof of concept rootkit has a number of implementational
limitations. It only works on PS/2 keyboards, a subset of
network cards, and it is limited to single processor systems. All
of these limitations could be addressed with additional time and
research. First, it is likely possible to extend our PS/2
implementation to intercept events from more modern USB
keyboards. The chipset I/O Controller Hub documentation
defines a legacy keyboard handling mechanism for USB
keyboards which may be exploitable. This legacy operation is
performed through SMM space and provides an area for future
research.

“When a USB keyboard is plugged into the system, and a
standard keyboard is not, the system may not boot, and DOS
legacy software will not run, because the keyboard will not be
identified. The ICH4 implements a series of trapping operations
which will snoop accesses that go to the keyboard controller,
and put the expected data from the USB keyboard into the
keyboard controller. This legacy operation is performed
through SMM space [6].”

Second, network card support could be extended provided that
chipset documentation is available. Intel provides developer
documentation for most of their LAN cards. Finally, our rootkit
could probably be extended to work on the newer multi-
processor and multi-core systems. We don’t have a multi-core
test machine with SMM unlocked, however, the documentation
indicates that any processor in a multiprocessor system can
respond to an SMI event and that two processors can be
executing in SMM at the same time. Furthermore, the manual
states that SMM is not re-entrant and that each processor should

XXX

Figure 5: Our test driver opening SMRAM space and displaying the original SMM handler.

XXX

have its own dedicated SMRAM space. Based upon this
documentation, it should be possible to extend our rootkit to
handle SMI’s on more than processor; however, it will require
additional research and development.

In general, the architectural limitations that will apply to an
SMM based rootkit include weather or not the SMRAMC
register is locked, the chipset specific nature of an SMBR, and
the size limitation of the SMM memory space. Clearly, the
biggest limitation is the fact that an SMBR can be installed only
if the SMRAMC register is unlocked. The hardware specific
nature of the SMBR is probably the second biggest limitation.
Because many of the register offsets vary based on chipset, an
attacker would need to both know the hardware of the target
machine or hardcode a table of register offsets for every chipset
and do detection on the fly. There may also be other subtle
discrepancies in the chipset and/ or hardware implementation
that would require additional code to detect and handle. This
coupled with the fact that SMRAM is limited in size may render
a generic approach impractical. Finally, an SMBR is non-
persistent [26]. It exists only in volatile memory and must be re-
installed after a system reboot.

Beyond the architectural limitations, there are also several other
implementational limitations. First, there is no Operating
System driver support for the SMBR to rely upon. Hardware
access therefore requires implementation of rudimentary low
level drivers inside the SMM handler. Second, the handler must
be written in 16 bit assembly [5]. It is at least mildly reassuring
that writing chipset level hardware device drivers in 16 bit
assembly is beyond the reach of all but the most sophisticated
attackers. As a result, it is unlikely that SMM will appear in
common malware, but will instead remain limited to
sophisticated, targeted attacks.

5. TESTING
We conducted four different tests. The first one was a
vulnerability assessment. We wanted to get an idea of how
wide-spread the SMBR threat might be and the types of systems
that were most likely to be affected. Our other experiments
involved testing our proof of concept SMM rootkit on a live
system. We sought to validate its invisibility to other system
software and its functionality as a keylogger network backdoor
capable of exfiltrating sensitive data.

5.1 Vulnerability Assessment
The goal of our first experiment was to perform a system
vulnerability assessment. We wrote a Windows device driver to
query the SMRAMC register for the values of the D_OPEN,
D_CLOSED, and D_LCK bits. We ran this program on 14
different systems and recorded the manufacturer, chipset, BIOS
version, BIOS date, and whether or not the system was locked.
Figure 5 shows debug output from the test driver we wrote. Out
of these 14 systems, we found 6 were unlocked and vulnerable
to the SMBR threat. Because a majority of the unlocked
systems had BIOS revision dates two years old or greater and
most of the locked systems had more recent BIOS revision
dates, we concluded that newer BIOS were locking System
Management Mode. Nevertheless, a substantial percentage of
commodity hardware in use today is at least two years old. This
still makes SMBRs a significant threat. Figure 4 summarizes
our preliminary results. We will conduct more comprehensive
vulnerability assessment in the near future, especially testing a
variety of older Intel-based machines.

5.2 Live Testing – Hiding In Memory
Our next experiment involved testing our proof of concept
SMBR. We installed it on an unlocked DELL Dimension 2400

Figure 6: Capturing the Key Logger Packet (TFTP Header is [00,03,00,00] for a data packet).
XXX

running an Intel 845 chipset. The system was installed with the
Microsoft Windows XP Operating system. We first sought to
verify the invisibility of the installed rootkit. This was
accomplished by using the WinDbg kernel debugger to view the
physical memory region where we loaded the rootkit code [28].
As expected, we were unable to read the code from this area
because one of the functions of the rootkit installer is to close
and lock System Management Mode by writing to the
SMRAMC register. As shown in Figure 2, this will cause the
access to be routed to VGA memory. This result is
unsurprising when one considers that the chipset’s Memory
Controller Hub (MCH) functions as a gatekeeper for all physical
memory accesses. All memory accesses, regardless of weather
they originate from software or hardware must pass through the
MCH logic. The MCH logic snoops physical addresses on the
bus and blocks unauthorized access to certain ranges like the
SMM memory space.

5.3 Live Testing – Key Logging
Next, we validated the operation of the keylogger. Our proof of
concept code is currently limited to keyboards with a P/S 2
interface. Because it is impossible to read SMRAM once the
rootkit is installed and the size of the SMRAM space is limited,
we needed a way to save and verify the logged keystrokes. We
implemented two different output methods: the serial port and
system physical memory.

In the first method, we output the logged keystrokes over the
serial port from inside the SMM handler. We use the Windows
Hyperterminal program to capture the serial output and verify it

against our key presses. This method is primarily useful for
debugging the SMM rootkit code.

In the second method, the SMM handler writes the keyboard
data to an allocated page of physical memory. Since this page is
outside the SMRAM space, we were able to attach the WinDbg
kernel debugger and read the recorded keyboard scan codes
from the page. An attacker could use system memory in this
manner as a temporary storage for the key log file. To make it
even stealthier, the attacker could encrypt the data in SMM
mode before writing it out to system memory. Because
SMRAM is not accessible outside SMM, it would be impossible
to obtain a copy of the key to decrypt the stored data, even if one
knew where to look. To an outsider the encrypted keyboard
data would simply appear as random bytes and would be
unlikely to raise suspicion.

It should also be mentioned that our SMBR implementation
doesn’t adversely affect the performance of the target system.
That is, from a subjective, user’s perspective, our SMBR key
logger does not introduce any noticeable slow down or latency
in keyboard input at the GUI level. We validated this at
different typing rates, but did not quantify the SMBR’s
performance using objective measures. This is an area of future
research.

5.4 Live Testing – Data Exfiltration
Finally, we validated that our network backdoor was able to
both log keystrokes and transmit packets containing the logged
data successfully from inside the SMM rootkit handler. We
used an Intel Pro 100B network card for development and tested

XXX

Category SMBR VMBR

Vulnerable System Space Mostly pre 2005 Systems Post 2006 Systems

Operational Environment 16 bit Mode w/o Paging 32 bit Protected Mode w/ Paging

OS Independent YES YES

Memory Footprint Hiding YES YES (with memory virtualization)

Control

Chipset IRQs

� Keyboard
� Mouse
� Network Card
� USB
� Disk

CPU

� Processor Interrupts
� Debug Register R/W
� Control Register R/W
� Privileged Instructions
� Memory Access

Defense
Set D_LCK in SMRAMC
register either in BIOS or
during early boot of OS.

OS or BIOS should install a
secure virtual machine that
prevents installation of 3rd party
virtual machines.

Figure 7: Comparison of VMBRs and SMBRsXXX

using 2 machines connected to an an Ethernet network via a
DLINK router. The first machine was the aforementioned Dell
Dimension 2400. We installed the SMBR on it. The second
machine was a Dell Precision 390 running Windows XP. We
installed Microsoft Network Monitor 3.1 on it so that we could
sniff incoming network traffic. We were able to validate that the
key press data was successfully received by the second machine
by examining the sniffer output. The SMM network code,
however, is card specific and would require modification to run
on other network cards. Figure 6 provides a screenshot showing
that the SMM keyboard data was packaged into a TFTP packet
and sent out to the remote machine using UDP over IP. The
data payload following the TFTP header is highlighted.

6. EVALUATION & DISCUSSION
SMM and VMM based rootkits both operate at a level outside
an existing operating system. Therefore it makes sense to
compare and contrast them. We compare and contrast the SMM
and VMM rootkits based on 4 characteristics: Operating
Environment, Complexity and Size, Control, and Stealth.
Figure 7 summarizes the comparisons between SMBRs and
VMBRs.

6.1 Operating Environment
SMBR and VMBR rootkits each have their own optimal target
environment. Both types of rootkits are hardware specific.
Virtualization rootkits can only exist on processors supporting
virtualization extensions. This limits them to newer processors
mostly less than 1-2 years old. In contrast, SMM rootkits are
more likely to exist on older processors containing older BIOS
versions (greater than 1-2 years old as shown in Figure 7). This
is due to the fact that many newer BIOS have set the D_LCK bit
in the SMRAM control register rendering SMRAM inaccessible
outside the BIOS.

Additionally, while virtualization rootkits are processor specific,
System Management Mode based rootkits are chipset specific.
This makes them best suited for a sophisticated, targeted attack

rather than a vector for widespread malware distribution. The
operating environments are also very different because VMBRs
operate in protected mode with paging enabled while SMBRs
operate in a 16 bit environment similar to Real Mode without
paging. Finally, both VMBR’s and SMBR’s can be classified as
non-persistent rootkits. Non persistent rootkits exist only in
memory and lack the ability to persist across reboots on the
machine they are installed on. Although on the surface this
seems like a significant disadvantage, when one considers that
many server systems run for weeks or months at a time between
reboots, it becomes less of an issue. Due to the complex nature
of the SMBR, it is unlikely that such a rootkit will appear on the
more frequently rebooted systems (e.g. home user machines)
anytime soon.

6.2 Complexity & Size
Compared with VMBRs, SMBRs have an advantage in terms of
size and complexity. While they have the added developmental
complexity of having to deal with writing the SMM handler in
legacy 16 bit assembly, they expend little effort to conceal their
memory footprint as the chipset handles the memory access
redirection once SMRAM has been closed and locked by the
handler. On the other hand, in order to provide similar stealth, a
VMBR will likely have a larger code footprint. This is due to its
need to include complex paging code for memory virtualization
support.

6.3 Control
 Both VMBR and SMBR rootkits are capable of efficiently
exerting control over the system and neither needs to modify the
target Operating System in order to obtain that control. With
that said, VMM rootkits might have the upper hand where
flexibility is concerned. They can intercept a greater number of
higher level events like interrupts, memory access, debug and
control register reads / writes, and execution of specific
privileged instructions. Although SMBRs have considerable
control over peripheral hardware as we demonstrated in our

proof of concept keylogger, in general, they tend to intercept
lower level hardware events like power management, thermal
regulation, and bus errors and will have limited control over
processor specific events like memory access and instruction
execution.

6.4 Stealth
Compared with VMBRs, SMBRs are stealthier. Several
detections based upon cache and TLB discrepancies have been
proposed for detecting virtualization rootkits [2]. Because a
VMBR operates in protected mode with paging enabled, there is
no easy way for it to prevent its execution from affecting the
TLB. SMBRs are immune to these types of detection because
they operate in an environment without cacheing or paging
enabled. Therefore, they should not have any detectable effects
upon either the cache or the TLB.

SMM rootkits may provide greater stealth with less overhead. A
VMM rootkit is not hidden in memory unless it implements
memory virtualization. In contrast, the SMBR is hidden by
default due to the MCH redirection of non SMM originated
memory accesses to the SMRAM region.

7. DEFENSE
In this section, we consider the detection and prevention of both
OS dependent and OS independent rootkits. We feel that the
emergence of OS independent rootkits necessitates a shift in
focus from detection to prevention.

7.1 OS Dependant Rootkits
To date, most rootkit defense has focused on rootkit detection.
This is possibly because detecting an OS dependent rootkit may,
in fact, be easier than preventing its installation. Prevention is
difficult and there are several reasons for this. These include
difficulty controlling end user behavior, multiple attack entry
points, and the presence of unpatched vulnerabilities.

It is difficult to control the behavior of an end user. End users
are subject to social engineering attacks which may lead to them
inadvertently install or run a malicious application. Assuming
that the malicious application has gotten past the user, security
software may attempt to prevent further damage by preventing
or limiting access to the kernel. Unfortunately, there are many
entry points into the kernel and it is difficult to guard them all.
Additionally, there are often undocumented entry points into a
system. These usually take the form of exploits for unpatched
vulnerabilities in the Operating System or critical software.

 While prevention is a difficult problem, detection may be
slightly easier. OS dependent malware can be detected fairly
reliably using signature or heuristic based scans. Clearly,
malware that coexists with an OS must make changes within the
environment in order to exercise control over it and / or hide
itself. Heuristics have been developed to detect many of these
changes [11][22].

7.2 OS Independant Rootkits
OS independent rootkits present a new dilemma. Both
virtualization and SMM rootkits are considerably more difficult
to defend against than OS dependent malware. First, it is not
necessary for them to make any visible changes to the OS.
Thus, heuristics are not useful. Second, they have the capability
to conceal their memory footprints making signatures useless.

As a result, indirect detection measures like timing or cache
discrepancies have been suggested for virtualization rootkits [2].

Timing attacks may provide a method of detecting an SMM
rootkit. We have validated that the processor’s timestamp
counter is updated, even while executing in SMM. Thus, it may
be possible to devise a detection that reads the timestamp
counter before and after an SMI and compares it with the time it
takes to simply perform sequential reads of the counter.
Unfortunately, it is also possible for an SMM rootkit to cheat
this form of detection. This is because the rootkit itself has
access to the counter and is capable of modifying it before
returning control back to the host Operating System.

Another class of detection for OS independent malware relies on
cache or TLB discrepancies. For example, VMM rootkits may
be detected by their effects on the cache or TLB because they
must exist in cacheable, pageable memory. Unfortunately, this
kind of timing attack is not valid against SMM rootkit. SMM
rootkit does not influence the cache or TLB because it can exist
in uncached memory and does not use paging.

It has also been suggested to move detection off the CPU onto
another hardware device that has access to physical memory
[14]. The problem with this approach is that the chipset
arbitrates all external device communication / physical memory
access through the Memory Controller Hub (MCH). Therefore,
SMRAM will remain inaccessible to any devices residing on the
system bus.

As mentioned previously, one could check the IOAPIC
redirection table for interrupts that have been routed to SMIs. A
rerouted interrupt may be considered a “red flag”, but even that
may not be a sufficient heuristic. There are, in fact, legitimate
reasons to route an interrupt to an SMI. One such legitimate
use is to provide legacy keyboard and mouse support for USB
devices [29]. Therefore, lacking other rootkit indicators, it may
be difficult to determine the illegitimacy of a re-routed interrupt
and state with certainty that it was installed by a rootkit. It may,
however, be possible to detect VMBR and SMBR malware
during installation if a signature is known. This is possible
because an anti-malware kernel module can scan third party
drivers and processes as they are being loaded. On the other
hand, if a signature for the malware is not known or the malware
installs itself through an undocumented interface (e.g. exploit),
it is unlikely to be detected.

We suggest that the emergence of OS independent malware like
SMM and virtualization rootkits necessitates a shift in emphasis
from detection to prevention. Virtualized rootkits may be
prevented by installing a secure Virtual Machine Monitor
(VMM) that prevents the installation of other virtual machines
[27]. SMBRs can be prevented by locking down the SMRAM
register in the BIOS. Therefore, chipset manufacturers should
be encouraged to release BIOS updates to address this problem.
and system administrators of older machines should ensure that
their BIOS are up to date. In the interim, the Operating System
could greatly mitigate this problem by locking the register
during early boot before third party drivers are loaded. This
would prevent such rootkits from being installed by user mode
applications or kernel drivers on a running system. Failing both
of the aforementioned suggestions, a third party Anti Virus or
Host Based Intrusion Prevention (HIPS) software application

could write a driver to lock the SMRAM control register that the
OS installs during early boot. Unfortunately, it is difficult to
guarantee that the protection driver will be loaded before
another malicious kernel driver.

In this paper, we have exposed a potential threat that has not
been widely recognized. We have established that a SMM
rootkit has chipset level control over peripheral hardware
including the network controller, USB ports, mouse, keyboard,
and disk. It has control of both the I/O and Local APIC, is able
to easily conceal its memory footprint, and read / write
indiscriminately to the 32 bit physical address space. Practical
development of an SMM rootkit, however, is constrained by the
following limitations: the need for SMRAM to be unlocked, the
need to write the handler in assembly, and the lack of Operating
System support. As a result, it likely that SMM rootkits will
remain limited to sophisticated, targeted attacks.

Finally, we note that the SMM rootkit can be viewed as a new
breed of OS independent malware related to VMBR and BIOS
rootkits and that a significant number of older systems (>2
years old) remain vulnerable to this threat. Furthermore, the
SMBR provides a method of implementing an OS independent
rootkit on processors that don’t support the new virtualization
extensions. Thus, it may contribute to an effective multi-vector
rootkit attack capable of targeting a large subset of current
systems on the market. We suggest that the emergence of such
malware necessitates a shift in perspective from detection to
prevention and that a closer relationship between security
researchers and hardware developers should be fostered.

ACKNOWLEDGEMENT
This work was supported by NSF Cyber Trust Grant CNS-
0627318 and Intel Research Fund.

8. REFERENCES
[1] S.T. King, P.M. Chen, Y-M Wang, C. Verbowski, H.J.

Wang, and J.R. Lorch. Subvirt: Implementing malware
with virtual machines. In Proceedings of IEEE Symposium
on Security and Privacy (S&P'06), pages 314{327,
Washington, DC, USA, 2006. IEEE Computer Society.

[2] T. Garfinkel, K. Adams, A. Warfield, and J. Franklin.
Compatibility is Not Transparency: VMM Detection
Mythis and Realities. In HotOS XI: 11th Workshop on Hot
Topics in Operating Systems, 2007. USENIX.

[3] J. Rutkowska. Subverting Vista Kernel for Fun and Profit.
Presented at Black Hat USA, Aug. 2006.

[4] Intel Corporation. Intel 64 and IA-32 Architectures
Software Developer’s Manual Volume 3B: System
Programming Guide, Part 2. May 2007.

[5] Intel Corporation. Intel 64 and IA-32 Architectures
Software Developer’s Manual Volume 3A: System
Programming Guide, Part 1. May 2007.

[6] Intel Corporation. Intel 82801DB I/O Controller Hub 4
(ICH4). May 2002.

[7] Intel Corporation. Intel 845GE/845PE Chipset
Datasheet. Oct. 2002.

[8] J. Heasman. Implementing and Detecting an ACPI BIOS
Rootkit. Presented at Black Hat Federal, 2006.

[9] L. Duflot, D. Etiemble, and O. Grumelard. Using CPU
System Management Mode to Circumvent Operating
System Security Functions. In. DCSSI 51 bd. De la Tour
Maubourg 75700 Paris Cedex, France. 2007.

[10] S. Sparks and J. Butler. Shadow Walker: Raising the Bar
for Windows Rootkit Detection. In Phrack Volume 0x0B,
Issue 0x3D, Phile #0x08 of 0x14. 2005.

[11] J. Butler. VICE – Catch the Hookers. Presented at Black
Hat USA. Aug 2004.

[12] G. Kim and E. Spafford. The design and implementation
of tripwire: a file system integrity checker. In Proceedings
of the 2nd ACM Conference on Computer and
communications security, 1994. ACM Press.

[13] J. Butler and G. Hoglund. Rootkits: Subverting the
Windows Kernel. Addison-Wesley, 2005.

[14] N. L. Petroni, T. Fraser, J. Molina, and W. A. Arbaugh.
Copilot – A Coprocessor-based Kernel Runtime Integrity
Monitor. In Proc. Usenix Security Symposium, Aug. 2004.

[15] 8042 Keyboard Controller..
http://heim.ifi.uio.no/~stanisls/helppc/8042.html

[16] Rootkit. http://en.wikipedia.org/wiki/Rootkit. 2007.

[17] B. Cogswell and M. Russinovich. RootkitRevealer v1.71.
Nov 1, 2006. Http://www.microsoft.com/technet/
sysinternals/Utilities/RootkitRevealer.mspx

[18] F-Secure Black Light. http://www.f-secure.com/blacklight

[19] Thimbleby, S. Anderson, P. Cairns. A Framework for
Modeling Trojans and Computer Virus Infections. The
Computer Journal, Vol. 41, No.7, pp. 444-458. 1998.

[20] G. Hoglund. A *REAL* NT Rootkit, patching the NT
Kernel. In Phrack Magazine, Vol. 9, No 55, 1999.

[21] Fuzen Op. The FU rootkit.
http://www.rootkit.com/project.php?id=12.

[22] J. Rutkowska. System Virginity Verifier – Defining the
Roadmap for Malware Detection on Windows System.
Presented at Hack In The Box. Sept 2005.

[23] D. A. Zovi. Hardware Virtualization Rootkits. Presented at
Black Hat USA, Aug 2006. http://www.theta44.org/
software/HVM_Rootkits_ddz_bh-usa-06.pdf

[24] J. Rutkowska. New Blue Pill.
http://www.bluepillproject.org/stuff/nbp-0.11.zip. 2007

[25] J. Heasman. Implementing and Detecting an ACPI BIOS
Rootkit. Presented at Black Hat, Federal. 2006.

[26] http://www.blackhat.com/presentations/bh-federal-06/BH-
Fed-06-Heasman.pdf

[27] J. Butler and S. Sparks. Windows rootkits of 2005, part
two. http://www.securityfocus.com/infocus/1851. 2005.

[27] J. Rutkowska. IsGameOver() Anyone? Presented at
Black Hat, USA. Aug 2007.

[28] Windbg. http://en.wikipedia.org/wiki/WinDbg. 2007.

[29] Support for USB and Legacy Keyboards and Mouse
Devices. Dec 2001.
http://microsoft.com/whdc/device/input/usbhost.mspx

